这篇文章学习以太坊转账中交易生成流程。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
// internal/ethapi/api.go
// SendTransaction will create a transaction from the given arguments and
// tries to sign it with the key associated with args.To. If the given passwd isn't
// able to decrypt the key it fails.
func (s *PrivateAccountAPI) SendTransaction(ctx context.Context, args SendTxArgs, passwd string) (common.Hash, error) {
if args.Nonce == nil {
// Hold the addresse's mutex around signing to prevent concurrent assignment of
// the same nonce to multiple accounts.
s.nonceLock.LockAddr(args.From)
defer s.nonceLock.UnlockAddr(args.From)
}
signed, err := s.signTransaction(ctx, &args, passwd)
if err != nil {
log.Warn("Failed transaction send attempt", "from", args.From, "to", args.To, "value", args.Value.ToInt(), "err", err)
return common.Hash{}, err
}
return submitTransaction(ctx, s.b, signed)
}
如果 args.Nonce == nil,那么后面会通过 GetPoolNonce() 来获取一个 Nonce,这里需要上锁,也可以指定 Nonce。
signTransaction 是构造交易和签名的流程。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
// signTransaction sets defaults and signs the given transaction
// NOTE: the caller needs to ensure that the nonceLock is held, if applicable,
// and release it after the transaction has been submitted to the tx pool
func (s *PrivateAccountAPI) signTransaction(ctx context.Context, args *SendTxArgs, passwd string) (*types.Transaction, error) {
// Look up the wallet containing the requested signer
account := accounts.Account{Address: args.From}
wallet, err := s.am.Find(account)
if err != nil {
return nil, err
}
// Set some sanity defaults and terminate on failure
if err := args.setDefaults(ctx, s.b); err != nil {
return nil, err
}
// Assemble the transaction and sign with the wallet
tx := args.toTransaction()
var chainID *big.Int
if config := s.b.ChainConfig(); config.IsEIP155(s.b.CurrentBlock().Number()) {
chainID = config.ChainID
}
return wallet.SignTxWithPassphrase(account, passwd, tx, chainID)
}
setDefaults 是对交易体做一些默认配置。 toTransaction 是构造交易体。 SignTxWithPassphrase 是签名流程。 先看下 setDefaults :
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
// setDefaults is a helper function that fills in default values for unspecified tx fields.
func (args *SendTxArgs) setDefaults(ctx context.Context, b Backend) error {
if args.Gas == nil {
args.Gas = new(hexutil.Uint64)
*(*uint64)(args.Gas) = 90000
}
if args.GasPrice == nil {
price, err := b.SuggestPrice(ctx)
if err != nil {
return err
}
args.GasPrice = (*hexutil.Big)(price)
}
if args.Value == nil {
args.Value = new(hexutil.Big)
}
if args.Nonce == nil {
nonce, err := b.GetPoolNonce(ctx, args.From)
if err != nil {
return err
}
args.Nonce = (*hexutil.Uint64)(&nonce)
}
if args.Data != nil && args.Input != nil && !bytes.Equal(*args.Data, *args.Input) {
return errors.New(`Both "data" and "input" are set and not equal. Please use "input" to pass transaction call data.`)
}
if args.To == nil {
// Contract creation
var input []byte
if args.Data != nil {
input = *args.Data
} else if args.Input != nil {
input = *args.Input
}
if len(input) == 0 {
return errors.New(`contract creation without any data provided`)
}
}
return nil
}
如果不提供 gas 限制值,那么默认是 90000.
如果不提供 GasPrice,那么会通过 SuggestPrice() 获得一个推荐值。
如果没有 nonce, 那么会通过 GetPoolNonce() 来得到一个。
在 to == nil 的时候,是创建智能合约,那么会对 data 和 input 进行一系列检查。
下面是构造交易体流程:
1
2
3
4
5
6
7
8
9
10
11
12
func (args *SendTxArgs) toTransaction() *types.Transaction {
var input []byte
if args.Data != nil {
input = *args.Data
} else if args.Input != nil {
input = *args.Input
}
if args.To == nil {
return types.NewContractCreation(uint64(*args.Nonce), (*big.Int)(args.Value), uint64(*args.Gas), (*big.Int)(args.GasPrice), input)
}
return types.NewTransaction(uint64(*args.Nonce), *args.To, (*big.Int)(args.Value), uint64(*args.Gas), (*big.Int)(args.GasPrice), input)
}
1
2
3
func NewTransaction(nonce uint64, to common.Address, amount *big.Int, gasLimit uint64, gasPrice *big.Int, data []byte) *Transaction {
return newTransaction(nonce, &to, amount, gasLimit, gasPrice, data)
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
func newTransaction(nonce uint64, to *common.Address, amount *big.Int, gasLimit uint64, gasPrice *big.Int, data []byte) *Transaction {
if len(data) > 0 {
data = common.CopyBytes(data)
}
d := txdata{
AccountNonce: nonce,
Recipient: to,
Payload: data,
Amount: new(big.Int),
GasLimit: gasLimit,
Price: new(big.Int),
V: new(big.Int),
R: new(big.Int),
S: new(big.Int),
}
if amount != nil {
d.Amount.Set(amount)
}
if gasPrice != nil {
d.Price.Set(gasPrice)
}
return &Transaction{data: d}
}
下面是签名的流程:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
// SignTxWithPassphrase signs the transaction if the private key matching the
// given address can be decrypted with the given passphrase.
func (ks *KeyStore) SignTxWithPassphrase(a accounts.Account, passphrase string, tx *types.Transaction, chainID *big.Int) (*types.Transaction, error) {
_, key, err := ks.getDecryptedKey(a, passphrase)
if err != nil {
return nil, err
}
defer zeroKey(key.PrivateKey)
// Depending on the presence of the chain ID, sign with EIP155 or homestead
if chainID != nil {
return types.SignTx(tx, types.NewEIP155Signer(chainID), key.PrivateKey)
}
return types.SignTx(tx, types.HomesteadSigner{}, key.PrivateKey)
}
先通过密码得到解密的密钥,然后调用 SignTx 来签名,注意的是 defer zeroKey,这里保证在函数结束的时候,会清空内存中的私钥。
1
2
3
4
5
6
7
8
9
// SignTx signs the transaction using the given signer and private key
func SignTx(tx *Transaction, s Signer, prv *ecdsa.PrivateKey) (*Transaction, error) {
h := s.Hash(tx)
sig, err := crypto.Sign(h[:], prv)
if err != nil {
return nil, err
}
return tx.WithSignature(s, sig)
}
先求 hash 然后做 sign。
看下 hash 的过程:
1
2
3
4
5
6
7
8
9
10
11
12
// Hash returns the hash to be signed by the sender.
// It does not uniquely identify the transaction.
func (fs FrontierSigner) Hash(tx *Transaction) common.Hash {
return rlpHash([]interface{}{
tx.data.AccountNonce,
tx.data.Price,
tx.data.GasLimit,
tx.data.Recipient,
tx.data.Amount,
tx.data.Payload,
})
}
这里是 rlpHash,即先做 RLP 转换,然后做 Keccak256 hash。这里 hash 的数据,包括:账户 nonce,gas price,gas limint,目标地址,金额,额外数据。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
// submitTransaction is a helper function that submits tx to txPool and logs a message.
func submitTransaction(ctx context.Context, b Backend, tx *types.Transaction) (common.Hash, error) {
if err := b.SendTx(ctx, tx); err != nil {
return common.Hash{}, err
}
if tx.To() == nil {
signer := types.MakeSigner(b.ChainConfig(), b.CurrentBlock().Number())
from, err := types.Sender(signer, tx)
if err != nil {
return common.Hash{}, err
}
addr := crypto.CreateAddress(from, tx.Nonce())
log.Info("Submitted contract creation", "fullhash", tx.Hash().Hex(), "contract", addr.Hex())
} else {
log.Info("Submitted transaction", "fullhash", tx.Hash().Hex(), "recipient", tx.To())
}
return tx.Hash(), nil
}
这里提交交易体到网络上,并且如果是创建智能合约的交易,那么会将智能合约地址计算出来,并记录到 log,最后返回交易体的 hash。
1
2
3
4
5
// CreateAddress creates an ethereum address given the bytes and the nonce
func CreateAddress(b common.Address, nonce uint64) common.Address {
data, _ := rlp.EncodeToBytes([]interface{}{b, nonce})
return common.BytesToAddress(Keccak256(data)[12:])
}
智能合约的地址是通过 创建者地址 和 nonce 计算出来的,可以保证唯一。
再看下 SendTx 的流程:
1
2
3
func (b *EthAPIBackend) SendTx(ctx context.Context, signedTx *types.Transaction) error {
return b.eth.txPool.AddLocal(signedTx)
}
1
2
3
4
5
6
// AddLocal enqueues a single transaction into the pool if it is valid, marking
// the sender as a local one in the mean time, ensuring it goes around the local
// pricing constraints.
func (pool *TxPool) AddLocal(tx *types.Transaction) error {
return pool.addTx(tx, !pool.config.NoLocals)
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
// addTx enqueues a single transaction into the pool if it is valid.
func (pool *TxPool) addTx(tx *types.Transaction, local bool) error {
pool.mu.Lock()
defer pool.mu.Unlock()
// Try to inject the transaction and update any state
replace, err := pool.add(tx, local)
if err != nil {
return err
}
// If we added a new transaction, run promotion checks and return
if !replace {
from, _ := types.Sender(pool.signer, tx) // already validated
pool.promoteExecutables([]common.Address{from})
}
return nil
}
主要的验证流程在 add 内:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
// add validates a transaction and inserts it into the non-executable queue for
// later pending promotion and execution. If the transaction is a replacement for
// an already pending or queued one, it overwrites the previous and returns this
// so outer code doesn't uselessly call promote.
//
// If a newly added transaction is marked as local, its sending account will be
// whitelisted, preventing any associated transaction from being dropped out of
// the pool due to pricing constraints.
func (pool *TxPool) add(tx *types.Transaction, local bool) (bool, error) {
// If the transaction is already known, discard it
hash := tx.Hash()
if pool.all.Get(hash) != nil {
log.Trace("Discarding already known transaction", "hash", hash)
return false, fmt.Errorf("known transaction: %x", hash)
}
// If the transaction fails basic validation, discard it
if err := pool.validateTx(tx, local); err != nil {
log.Trace("Discarding invalid transaction", "hash", hash, "err", err)
invalidTxCounter.Inc(1)
return false, err
}
// If the transaction pool is full, discard underpriced transactions
if uint64(pool.all.Count()) >= pool.config.GlobalSlots+pool.config.GlobalQueue {
// If the new transaction is underpriced, don't accept it
if !local && pool.priced.Underpriced(tx, pool.locals) {
log.Trace("Discarding underpriced transaction", "hash", hash, "price", tx.GasPrice())
underpricedTxCounter.Inc(1)
return false, ErrUnderpriced
}
// New transaction is better than our worse ones, make room for it
drop := pool.priced.Discard(pool.all.Count()-int(pool.config.GlobalSlots+pool.config.GlobalQueue-1), pool.locals)
for _, tx := range drop {
log.Trace("Discarding freshly underpriced transaction", "hash", tx.Hash(), "price", tx.GasPrice())
underpricedTxCounter.Inc(1)
pool.removeTx(tx.Hash(), false)
}
}
// If the transaction is replacing an already pending one, do directly
from, _ := types.Sender(pool.signer, tx) // already validated
if list := pool.pending[from]; list != nil && list.Overlaps(tx) {
// Nonce already pending, check if required price bump is met
inserted, old := list.Add(tx, pool.config.PriceBump)
if !inserted {
pendingDiscardCounter.Inc(1)
return false, ErrReplaceUnderpriced
}
// New transaction is better, replace old one
if old != nil {
pool.all.Remove(old.Hash())
pool.priced.Removed()
pendingReplaceCounter.Inc(1)
}
pool.all.Add(tx)
pool.priced.Put(tx)
pool.journalTx(from, tx)
log.Trace("Pooled new executable transaction", "hash", hash, "from", from, "to", tx.To())
// We've directly injected a replacement transaction, notify subsystems
go pool.txFeed.Send(NewTxsEvent{types.Transactions{tx}})
return old != nil, nil
}
// New transaction isn't replacing a pending one, push into queue
replace, err := pool.enqueueTx(hash, tx)
if err != nil {
return false, err
}
// Mark local addresses and journal local transactions
if local {
if !pool.locals.contains(from) {
log.Info("Setting new local account", "address", from)
pool.locals.add(from)
}
}
pool.journalTx(from, tx)
log.Trace("Pooled new future transaction", "hash", hash, "from", from, "to", tx.To())
return replace, nil
}
- 如果 hash 在池内已经存在,那么忽略
- 验证 tx 的有效性
- 如果池子已经满了,tx 不是 local,而且tx的价格最低,那么忽略,否则的话,清除目前最低价格的腾出一个位置。
- 如果 from 和 nonce 都相同,那么就替换掉之前的交易,否则就插入队列。
- 更新下 pool 的 locals 列表。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
// validateTx checks whether a transaction is valid according to the consensus
// rules and adheres to some heuristic limits of the local node (price and size).
func (pool *TxPool) validateTx(tx *types.Transaction, local bool) error {
// Heuristic limit, reject transactions over 32KB to prevent DOS attacks
if tx.Size() > 32*1024 {
return ErrOversizedData
}
// Transactions can't be negative. This may never happen using RLP decoded
// transactions but may occur if you create a transaction using the RPC.
if tx.Value().Sign() < 0 {
return ErrNegativeValue
}
// Ensure the transaction doesn't exceed the current block limit gas.
if pool.currentMaxGas < tx.Gas() {
return ErrGasLimit
}
// Make sure the transaction is signed properly
from, err := types.Sender(pool.signer, tx)
if err != nil {
return ErrInvalidSender
}
// Drop non-local transactions under our own minimal accepted gas price
local = local || pool.locals.contains(from) // account may be local even if the transaction arrived from the network
if !local && pool.gasPrice.Cmp(tx.GasPrice()) > 0 {
return ErrUnderpriced
}
// Ensure the transaction adheres to nonce ordering
if pool.currentState.GetNonce(from) > tx.Nonce() {
return ErrNonceTooLow
}
// Transactor should have enough funds to cover the costs
// cost == V + GP * GL
if pool.currentState.GetBalance(from).Cmp(tx.Cost()) < 0 {
return ErrInsufficientFunds
}
intrGas, err := IntrinsicGas(tx.Data(), tx.To() == nil, pool.homestead)
if err != nil {
return err
}
if tx.Gas() < intrGas {
return ErrIntrinsicGas
}
return nil
}
- 交易的大小不能超过 32K
- 签名不能小于0
- 交易gas limit 不能小于现在 pool 的 limits
- 什么是 signer? signer 可以用来从 tx 得到 from
- 如果不是 local,那么 price 不能小于现在池子的 price
- nonce 不能小于 池子的 nonce
- 余额要足够
- 计算实际的 gas 消耗,不能大于交易的 gas limit
- 都没问题的话,就返回成功